Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.547
Filtrar
1.
Nat Commun ; 15(1): 3979, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729972

RESUMEN

A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding. As temperature increased, we show that predators became closer in size to their prey, which was primarily associated with a decline in predator size and an increase in the relative abundance of intermediate-sized prey. The potential implications of these changes include reduced top-down control of prey populations and a reduction in the diversity of predator-prey interactions. Both of these factors could reduce the stability of community dynamics and ecosystem resistance to perturbations under ocean warming.


Asunto(s)
Tamaño Corporal , Peces , Océanos y Mares , Conducta Predatoria , Temperatura , Animales , Conducta Predatoria/fisiología , Tamaño Corporal/fisiología , Peces/fisiología , Cadena Alimentaria , Ecosistema , Dinámica Poblacional
2.
Ecol Lett ; 27(5): e14427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698677

RESUMEN

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Asunto(s)
Artrópodos , Biodiversidad , Aves , Clima , Conducta Predatoria , Árboles , Animales , Artrópodos/fisiología , Aves/fisiología , Cadena Alimentaria , Larva/fisiología
3.
PeerJ ; 12: e17346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737739

RESUMEN

Background: Together with the intensification of dry seasons in Neotropical regions, increasing deforestation is expected to exacerbate species extinctions, something that could lead to dramatic shifts in multitrophic communities and ecosystem functions. Recent studies suggest that the effects of habitat loss are greater where precipitation has decreased. Yet, experimental studies of the pure and interactive effects of drought and deforestation at ecosystem level remain scarce. Methods: Here, we used rainshelters and transplantation from rainforest to open areas of natural microcosms (the aquatic ecosystem and microbial-faunal food web found within the rainwater-filled leaves of tank bromeliads) to emulate drought and deforestation in a full factorial experimental design. We analysed the pure and interactive effects of our treatments on functional community structure (including microorganisms, detritivore and predatory invertebrates), and on leaf litter decomposition in tank bromeliad ecosystems. Results: Drought or deforestation alone had a moderate impact on biomass at the various trophic level, but did not eliminate species. However, their interaction synergistically reduced the biomass of all invertebrate functional groups and bacteria. Predators were the most impacted trophic group as they were totally eliminated, while detritivore biomass was reduced by about 95%. Fungal biomass was either unaffected or boosted by our treatments. Decomposition was essentially driven by microbial activity, and did not change across treatments involving deforestation and/or drought. Conclusions: Our results suggest that highly resistant microorganisms such as fungi (plus a few detritivores) maintain key ecosystem functions in the face of drought and habitat change. We conclude that habitat destruction compounds the problems of climate change, that the impacts of the two phenomena on food webs are mutually reinforcing, and that the stability of ecosystem functions depends on the resistance of a core group of organisms. Assuming that taking global action is more challenging than taking local-regional actions, policy-makers should be encouraged to implement environmental action plans that will halt habitat destruction, to dampen any detrimental interactive effect with the impacts of global climate change.


Asunto(s)
Conservación de los Recursos Naturales , Sequías , Ecosistema , Animales , Bromeliaceae , Cadena Alimentaria , Biomasa , Bosque Lluvioso , Invertebrados/fisiología
4.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739784

RESUMEN

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Asunto(s)
Plumas , Mercurio , Animales , Mercurio/análisis , Océano Atlántico , Plumas/química , Regiones Árticas , Groenlandia , Monitoreo del Ambiente/métodos , Aves , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Ecosistema
5.
Chemosphere ; 357: 142036, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615963

RESUMEN

Arthropods represent an entry point for pesticide transfers in terrestrial food webs, and pesticide accumulation in upper chain organisms, such as predators can have cascading consequences on ecosystems. However, the mechanisms driving pesticide transfer and bioaccumulation in food webs remain poorly understood. Here we review the literature on pesticide transfers mediated by terrestrial arthropods in food webs. The transfer of pesticides and their potential for bioaccumulation and biomagnification are related to the chemical properties and toxicokinetic of the substances, the resistance and detoxification abilities of the contaminated organisms, as well as by their effects on organisms' life history traits. We further identify four critical areas in which knowledge gain would improve future predictions of pesticides impacts on terrestrial food webs. First, efforts should be made regarding the effects of co-formulants and pesticides mixtures that are currently understudied. Second, progress in the sensitivity of analytical methods would allow the detection of low concentrations of pesticides in small individual arthropods. Quantifying pesticides in arthropods preys, their predators, and arthropods or vertebrates at higher trophic level would bring crucial insights into the bioaccumulation and biomagnification potential of pesticides in real-world terrestrial food webs. Finally, quantifying the influence of the trophic structure and complexity of communities on the transfer of pesticides could address several important sources of variability in bioaccumulation and biomagnification across species and food webs. This narrative review will inspire future studies aiming to quantify pesticide transfers in terrestrial food webs to better capture their ecological consequences in natural and cultivated landscapes.


Asunto(s)
Artrópodos , Bioacumulación , Cadena Alimentaria , Plaguicidas , Plaguicidas/metabolismo , Animales , Artrópodos/metabolismo , Ecosistema , Monitoreo del Ambiente , Contaminantes Ambientales/metabolismo
6.
Mar Pollut Bull ; 202: 116353, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598929

RESUMEN

Galaxolide (HHCB) and tonalide (AHTN) are dominant musks added to personal care products. However, the accumulate and trophic transfer of SMs through the marine food chain are unclear. In this study, organisms were collected from three bays in Bohai Sea to investigate the bioaccumulation, trophic transfer, and health risk of SMs. The HHCB and AHTN concentrations in the muscles range from 2.75 to 365.40 µg/g lw and 1.04-4.94 µg/g lw, respectively. The median HHCB concentrations in muscles were the highest in Bohai Bay, followed by Laizhou Bay and Liaodong Bay, consistent with the HHCB concentrations in sediments. The different fish tissues from Bohai Bay were analyzed, and the HHCB and AHTN concentrations followed the heart > liver > gill > muscles. The trophic magnification factors (TMF) were lower than 1 and the health risk assessment showed no adverse health effects. The results provide insights into the bioaccumulation and trophic transfer behavior of SMs in marine environments.


Asunto(s)
Monitoreo del Ambiente , Peces , Cadena Alimentaria , Contaminantes Químicos del Agua , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Animales , Peces/metabolismo , China , Bioacumulación , Benzopiranos , Ácidos Grasos Monoinsaturados/análisis , Ácidos Grasos Monoinsaturados/metabolismo , Tetrahidronaftalenos/análisis , Bahías
7.
Mar Pollut Bull ; 202: 116363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621354

RESUMEN

Planktonic organisms, which have direct contact with water, serve as the entry point for mercury (Hg), into the marine food web, impacting its levels in higher organisms, including fish, mammals, and humans who consume seafood. This study provides insights into the distribution and behavior of Hg within the Baltic Sea, specifically the Gulf of Gdansk, focusing on pelagic primary producers and consumers. Phytoplankton Hg levels were primarily influenced by its concentrations in water, while Hg concentrations in zooplankton resulted from dietary exposure through suspended particulate matter and phytoplankton consumption. Hg uptake by planktonic organisms, particularly phytoplankton, was highly efficient, with Hg concentrations four orders of magnitude higher than those in the surrounding water. However, unlike biomagnification of Hg between SPM and zooplankton, biomagnification between zooplankton and phytoplankton was not apparent, likely due to the low trophic position and small size of primary consumers, high Hg elimination rates, and limited absorption.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Mercurio , Fitoplancton , Contaminantes Químicos del Agua , Zooplancton , Mercurio/análisis , Mercurio/metabolismo , Contaminantes Químicos del Agua/análisis , Animales , Océanos y Mares
8.
Mar Pollut Bull ; 202: 116366, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621355

RESUMEN

Ocean acidification has become increasingly severe in coastal areas. It poses emerging threats to coastal organisms and influences ecological functioning. Donax faba, a dominant clam in the intertidal zone of the Bay of Bengal, plays an important role in the coastal food web. This clam has been widely consumed by the local communities and also acts as a staple diet for shorebirds and crustaceans. In this paper, we investigated how acidified conditions will influence the physiology, biochemical constituents, and energetics of Donax faba. Upon incubation for 2 months in lowered pH 7.7 ± 0.05 and control 8.1 ± 0.05 conditions, we found a delayed growth in the acidified conditions followed by decrease in calcium ions in the clam shell. Although not significant, we found the digestive enzymes showed a downward trend. Total antioxidant was significantly increased in the acidified condition compared to the control. Though not significant, the expression level of MDA and antioxidant enzymes (SOD, CAT, GST, GPX, and APX) showed increasing trend in acidified samples. Among nutrients such as amino acids and fatty acids, there was no significant difference between treatments, however, showed a downward trend in the acidified conditions compared to control. Among the minerals, iron and zinc showed significant increase in the acidified conditions. The above results suggest that the clam growth, and physiological energetics may have deleterious effects if exposed for longer durations at lowered pH condition thereby affecting the organisms involved in the coastal food web.


Asunto(s)
Bivalvos , Cadena Alimentaria , Agua de Mar , Animales , Concentración de Iones de Hidrógeno , Agua de Mar/química , Bivalvos/fisiología , Antioxidantes/metabolismo , Océanos y Mares , Acidificación de los Océanos
9.
Sci Total Environ ; 929: 172470, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621530

RESUMEN

Microplastics (MP) have become a well-known and widely investigated environmental pollutant. Despite the huge amount of new studies investigating the potential threat posed by MP, the possible uptake and trophic transfer in lower trophic levels of freshwater ecosystems remains understudied. This study aims to investigate the internalization and potential trophic transfer of fluorescent polystyrene (PS) beads (0.5 µm, 3.6 × 108 particles/mL; 6 µm, 2.1 × 105 particles/mL) and fragments (<30 µm, 5 × 103 particles/mL) in three unicellular eukaryotes. This study focuses on the size-dependent uptake of MP by two freshwater Ciliophora, Tetrahymena pyriformis, Paramecium caudatum and one Amoebozoa, Amoeba proteus, serving also as predator for experiments on potential trophic transfer. Size-dependent uptake of MP in all three unicellular eukaryotes was shown. P. caudatum is able to take up MP fragments up to 27.7 µm, while T. pyriformis ingests particles up to 10 µm. In A. proteus, small MP (PS0.5µm and PS6µm) were taken up via pinocytosis and were detected in the cytoplasm for up to 14 days after exposure. Large PS-MP (PS<30µm) were detected in A. proteus only after predation on MP-fed Ciliophora. These results indicate that A. proteus ingests larger MP via predation on Ciliophora (PS<30µm), which would not be taken up otherwise. This study shows trophic transfer of MP at the base of the aquatic food web and serves as basis to study the impact of MP in freshwater ecosystems.


Asunto(s)
Cadena Alimentaria , Agua Dulce , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Monitoreo del Ambiente , Tetrahymena pyriformis/metabolismo , Amoeba/metabolismo , Paramecium caudatum/metabolismo , Tamaño de la Partícula
10.
Sci Total Environ ; 929: 172536, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643886

RESUMEN

Oil and gas exploitation introduces toxic contaminants such as hydrocarbons and heavy metals to the surrounding sediment, resulting in deleterious impacts on marine benthic communities. This study combines benthic monitoring data over a 30-year period in the North Sea with dietary information on >1400 taxa to quantify the effects of active oil and gas platforms on benthic food webs using a multiple before-after control-impact experiment. Contamination from oil and gas platforms caused declines in benthic food web complexity, community abundance, and biodiversity. Fewer trophic interactions and increased connectance indicated that the community became dominated by generalists adapting to alternative resources, leading to simpler but more connected food webs in contaminated environments. Decreased mean body mass, shorter food chains, and the dominance of small detritivores such as Capitella capitata near to structures suggested a disproportionate loss of larger organisms from higher trophic levels. These patterns were associated with concentrations of hydrocarbons and heavy metals that exceed OSPAR's guideline thresholds of sediment toxicity. This study provides new evidence to better quantify and manage the environmental consequences of oil and gas exploitation at sea.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Cadena Alimentaria , Invertebrados , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos , Mar del Norte , Metales Pesados/análisis , Yacimiento de Petróleo y Gas , Sedimentos Geológicos/química
11.
Environ Sci Technol ; 58(18): 7860-7869, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38647522

RESUMEN

Algae are an entry point for mercury (Hg) into the food web. Bioconcentration of Hg by algae is crucial for its biogeochemical cycling and environmental risk. Herein, considering the cell heterogeneity, we investigated the bioconcentration of coexisting isotope-labeled inorganic (199IHg) and methyl Hg (201MeHg) by six typical freshwater and marine algae using dual-mass single-cell inductively coupled plasma mass spectrometry (scICP-MS). First, a universal pretreatment procedure for the scICP-MS analysis of algae was developed. Using the proposed method, the intra- and interspecies heterogeneities and the kinetics of Hg bioconcentration by algae were revealed at the single-cell level. The heterogeneity in the cellular Hg contents is largely related to cell size. The bioconcentration process reached a dynamic equilibrium involving influx/adsorption and efflux/desorption within hours. Algal density is a key factor affecting the distribution of Hg between algae and ambient water. Cellular Hg contents were negatively correlated with algal density, whereas the volume concentration factors almost remained constant. Accordingly, we developed a model based on single-cell analysis that well describes the density-driven effects of Hg bioconcentration by algae. From a novel single-cell perspective, the findings improve our understanding of algal bioconcentration governed by various biological and environmental factors.


Asunto(s)
Mercurio , Mercurio/metabolismo , Espectrometría de Masas , Compuestos de Metilmercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Cadena Alimentaria , Análisis de la Célula Individual
12.
Sci Total Environ ; 929: 172362, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649047

RESUMEN

Pollution-induced declines in fishery resources restrict the sustainable development of fishery. As a kind of typical environmental pollutant, the mechanism of polycyclic aromatic hydrocarbons (PAHs) facilitating fishery resources declines needs to be fully illustrated. To determine how PAHs have led to declines in fishery resources, a systematic toxicologic analysis of the effects of PAHs on aquatic organisms via food-web bioaccumulation was performed in the Pearl River and its estuary. Overall, PAH bioaccumulation in aquatic organisms was correlated with the trophic levels along food-web, exhibiting as significant positive correlations were observed between PAHs concentration and the trophic levels of fishes in the Pearl River Estuary. Additionally, waterborne PAHs exerted significant direct effects on dietary organisms (P < 0.05), and diet-borne PAHs subsequently exhibited significant direct effects on fish (P < 0.05). However, an apparent block effect was found in dietary organisms (e.g., zooplankton) where 33.49 % of the total system throughput (TST) was retained at trophic level II, exhibiting as the highest PAHs concentration, bioaccumulation factor (BAF), and biomagnification factor (BMF) of ∑15PAHs in zooplankton were at least eight-fold greater than those in fishes in both the Pearl River and its estuary, thereby waterborne PAHs exerted either direct or indirect effects on fishes that ultimately led to food-web simplification. Regardless of the block effect of dietary organisms, a general toxic effect of PAHs on aquatic organisms was observed, e.g., Phe and BaP exerted lethal effects on phytoplankton Chlorella pyrenoidosa and zooplankton Daphnia magna, and decreased reproduction in fishes Danio rerio and Megalobrama hoffmanni via activating the NOD-like receptors (NLRs) signaling pathway. Consequently, an assembled aggregate exposure pathway for PAHs revealed that increases in waterborne PAHs led to bioaccumulation of PAHs in aquatic organisms along food-web, and this in turn decreased the reproductive ability of fishes, thus causing decline in fishery resources.


Asunto(s)
Organismos Acuáticos , Bioacumulación , Monitoreo del Ambiente , Cadena Alimentaria , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/metabolismo , Animales , Organismos Acuáticos/efectos de los fármacos , Peces/metabolismo , Estuarios , Ríos/química , China
13.
Sci Total Environ ; 927: 172235, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582125

RESUMEN

Plastic pollution is a global challenge that affects all marine ecosystems, and reflects all types of uses and activities of human society in these environments. In marine ecosystems, microplastics and mesoplastics interact with invertebrates and become available to higher predators, such as fish, which can ingest these contaminants. This study aimed to analyze how ecological food interactions (diet overlap and trophic niche amplitude) among fish species contribute to the ingestion of plastic particles. The gastrointestinal contents of six fish species (Atherinella brasiliensis, Eucinostomus melanopterus, Eucinostomus argenteus, Genidens genidens, Coptodon rendalli, and Geophagus brasiliensis) were analyzed to identify prey items and plastic ingestion. Based on the ontogenetic classification, A. brasiliensis, E. melanopterus, and G. genidens were divided into juveniles and adults, and the six fish species analyzed were divided into nine predator groups. Most of the plastics ingested by the fish species were blue microplastic (MP) fibers (< 0.05 mm) classified as polyester terephthalate, polyethylene, and polybutadiene. Considering all the analyzed predators, the average number and weight of plastics ingested per individual were 2.01 and 0.0005 g, respectively. We observed that predators with a high trophic overlap could present a relationship with the intake of MP fibers owing to predation on the same resources. In addition, we observed the general pattern that when a species expands its trophic diversity and niche, it can become more susceptible to plastic ingestion. For example, the species with the highest Levin niche amplitude, E. argenteus juveniles, had the highest mean number (2.9) of ingested MP fibers. Understanding the feeding ecology and interactions among species, considering how each predator uses habitats and food resources, can provide a better understanding of how plastic particle contamination occurs and which habitats are contaminated with these polluting substances.


Asunto(s)
Monitoreo del Ambiente , Peces , Cadena Alimentaria , Microplásticos , Contaminantes Químicos del Agua , Animales , Peces/fisiología , Contaminantes Químicos del Agua/análisis , Contenido Digestivo/química , Plásticos/análisis , Ecosistema
14.
Sci Total Environ ; 928: 172290, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599391

RESUMEN

The contamination of wetlands by heavy metals, exacerbated by agricultural activities, presents a threat to both organisms and humans. Heavy metals may undergo trophic transfer through the food web. However, the methods for quantifying the bioaccumulation and trophic transfer processes of heavy metals based on the food web remains unclear. In this study, we employed stable isotope technology to construct a quantitative oriental white stork's typical food web model under a more accurate scaled Δ15N framework. On this basis, the concentrations for heavy metal (Cu, Zn, Hg, Pb) were analyzed, we innovatively visualized the trophic transfer process of heavy metals across 13 nodes and 45 links and quantified the transfer flux based on the diet proportions and heavy metal concentrations of species, taking into account biomagnification effects and potential risks. Our findings revealed that as for Cu and Pb, the transfer flux level was consistent with diet proportion across most links. While Hg and Zn transfer flux level exceeded the corresponding diet proportion in the majority of links. In summary, Hg exhibited a significant biomagnification, whereas Cu, Zn, Pb experienced biodilution. The fish dietary health risk assessment for fish consumers showed that Hg, Pb posed certain risks. This research marks a significant step forward in the quantitative assessment of multi-link networks involving heavy metals within the food web.


Asunto(s)
Bioacumulación , Monitoreo del Ambiente , Cadena Alimentaria , Metales Pesados , Contaminantes Químicos del Agua , Humedales , Metales Pesados/análisis , Metales Pesados/metabolismo , China , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Animales , Agua Dulce , Peces/metabolismo
15.
Sci Total Environ ; 929: 172706, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657799

RESUMEN

While eutrophication has led to serious habitat degradation and biotic shifts in freshwater ecosystems, most current studies have focused on changes in community assemblages, with few considering the effect of eutrophication on food webs. We conducted a field study in subtropical headwater streams with a gradient of water nutrient levels to examine the effect of increasing water nutrients on food webs by using the long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA) as a measure of the nutritional quality of food. Basal food resources (macrophytes, submerged leaf litter, and periphyton), and aquatic consumers (macroinvertebrates and fish) were collected, and their fatty acid (FA) profiles were analyzed. Our results showed that periphyton was the dominant source of EPA for macroinvertebrates and fish, and a high-quality resource for consumers. As water nutrient concentrations increased, nutritional quality of periphyton significantly decreased and, in turn, the correlation between FA profiles of periphyton and macroinvertebrates declined. However, periphyton FA profiles did not account for the variability of fish FA, which may be induced by the increasing proportions of omnivorous fish in eutrophic streams that derived EPA from other sources. Further, the reduced periphyton EPA was associated with decreased trophic links and simplified stream food webs. Our study highlights the importance of high-quality food resources for aquatic food webs as water nutrients increased in stream ecosystems and provides a nutritional perspective to understand the mechanisms how eutrophication affects aquatic ecosystems.


Asunto(s)
Eutrofización , Peces , Cadena Alimentaria , Ríos , Ríos/química , Animales , Invertebrados/fisiología , Monitoreo del Ambiente , Nutrientes/análisis , Contaminantes Químicos del Agua/análisis , Ácido Eicosapentaenoico/análisis , Ecosistema , Perifiton , Organismos Acuáticos
16.
Sci Total Environ ; 930: 172807, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38679092

RESUMEN

Biodiversity loss, as driven by anthropogenic global change, imperils biosphere intactness and integrity. Ecosystem services such as top-down regulation (or biological control; BC) are susceptible to loss of extinction-prone taxa at upper trophic levels and secondary 'support' species e.g., herbivores. Here, drawing upon curated open-access interaction data, we structurally analyze trophic networks centered on the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and assess their robustness to species loss. Tri-partite networks link 80 BC organisms (invertebrate or microbial), 512 lepidopteran hosts and 1194 plants (including 147 cultivated crops) in the Neotropics. These comprise threatened herbaceous or woody plants and conservation flagships such as saturniid moths. Treating all interaction partners functionally equivalent, random herbivore loss exerts a respective 26 % or 108 % higher impact on top-down regulation in crop and non-crop settings than that of BC organisms (at 50 % loss). Equally, random loss of BC organisms affects herbivore regulation to a greater extent (13.8 % at 50 % loss) than herbivore loss mediates their preservation (11.4 %). Yet, under moderate biodiversity loss, (non-pest) herbivores prove highly susceptible to loss of BC organisms. Our topological approach spotlights how agriculturally-subsidized BC agents benefit vegetation restoration, while non-pest herbivores uphold biological control in on- and off-farm settings alike. Our work underlines how the on-farm usage of endemic biological control organisms can advance conservation, restoration, and agricultural sustainability imperatives. We discuss how integrative approaches and close interdisciplinary cooperation can spawn desirable outcomes for science, policy and practice.


Asunto(s)
Biodiversidad , Herbivoria , Animales , Ecosistema , Spodoptera/fisiología , Cadena Alimentaria , Conservación de los Recursos Naturales/métodos
17.
Sci Total Environ ; 930: 172837, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38688360

RESUMEN

Microplastics could be ingested by many organisms, including zooplankton, involving bioaccumulation and biomagnification mechanisms a cross food webs. The information about microplastic ingestion by zooplankton keeps increasing worldwide. However, it is still limited for particle sizes under 300 µm (small microplastics, SMPs) and in areas such as Southeast Asia, which is considered one of the hotspots for plastic debris. This study aimed to characterize the size, shape, and polymer types of the SMPs ingested by the copepod Centropages furcatus in Si Chang Island (upper Gulf of Thailand). The study spans offshore and coastal waters, with data collected across wet, intermediate, and dry seasons. Using a semi-automated technique for micro-FTIR (Fourier-transform infrared) scanning spectroscopy for particle analysis, we found ingested SMPs in all samples. A total of 750 individuals of the calanoid Centropages furcatus were analyzed, finding 309 plastic particles and an average ingestion value of 0.41 ± 0.13 particles ind-1, one of the highest recorded values. All the particles were fragments, with a predominant size under 50 µm, and polymer types as Polypropylene (PP, 71 %), followed by Ethylene-Propylene-Diene-Monomer (EPDM, 16 %) and Polyethylene (PE, 7 %). Up to 470.2 particles m-3 were estimated to be retained by this calanoid species and potentially available for trophic transfer. The effect of rainfall on SMPs ingestion was inconclusive, with a non-significant observed tendency to higher ingestion values near the coastal area than offshore area, suggesting a decrease in particle exposure due to the runoff effect. Nevertheless, future studies should increase the frequency of surveys to arrive at better conclusions.


Asunto(s)
Copépodos , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Tailandia , Animales , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Cadena Alimentaria , Tamaño de la Partícula , Ingestión de Alimentos , Plásticos/análisis , Zooplancton
18.
Proc Biol Sci ; 291(2021): 20232468, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654648

RESUMEN

The interplay of host-parasite and predator-prey interactions is critical in ecological dynamics because both predators and parasites can regulate communities. But what is the prevalence of infected prey and predators when a parasite is transmitted through trophic interactions considering stochastic demographic changes? Here, we modelled and analysed a complex predator-prey-parasite system, where parasites are transmitted from prey to predators. We varied parasite virulence and infection probabilities to investigate how those evolutionary factors determine species' coexistence and populations' composition. Our results show that parasite species go extinct when the infection probabilities of either host are small and that success in infecting the final host is more critical for the survival of the parasite. While our stochastic simulations are consistent with deterministic predictions, stochasticity plays an important role in the border regions between coexistence and extinction. As expected, the proportion of infected individuals increases with the infection probabilities. Interestingly, the relative abundances of infected and uninfected individuals can have opposite orders in the intermediate and final host populations. This counterintuitive observation shows that the interplay of direct and indirect parasite effects is a common driver of the prevalence of infection in a complex system.


Asunto(s)
Cadena Alimentaria , Interacciones Huésped-Parásitos , Conducta Predatoria , Animales , Parásitos/fisiología , Modelos Biológicos , Dinámica Poblacional
19.
Bull Environ Contam Toxicol ; 112(4): 61, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602522

RESUMEN

Total mercury (Hg) concentrations and carbon (δ13C) and nitrogen (δ15N) stable isotopes were quantified among aquatic invertebrate and sediment samples collected from Keuka Lake in New York's Finger Lakes region to evaluate temporal and spatial variability in Hg bioaccumulation and trophic ecology among these lower trophic levels. Hg concentrations ranged from 6.3 to 158.8 ng/g (dry wt) across dreissenid mussel, zooplankton, and juvenile (< 10 mm) and adult (≥ 10 mm) mysid shrimp (Mysis diluviana) samples. Hg concentrations were higher in samples collected from the western basin in 2015 relative to those for samples collected from this basin in 2022 (p < 0.001). While no specific mechanisms could be identified to explain this difference, higher δ15N values for zooplankton collected in 2015 support conclusions regarding the role of zooplankton trophic status on Hg concentrations in these populations. Spatial patterns in Hg concentrations were of generally low variability among samples collected from the lake's east, west and south basins in 2022. Trophic positions as inferred by δ15N were represented by adult mysids > juvenile mysids > large zooplankton (≥ 500 µm) > dreissenid mussels ≥ small zooplankton (64-500 µm). Differences were evident among the regression slopes describing the relationships between sample Hg concentrations and δ15N values across the lake's three basins (p = 0.028). However, this was primarily attributed to high δ15N values measured in dreissenid mussels collected from the south basin in 2022. Biota sediment accumulation factors ranged from 0.2 to 2.3 and were highest for adult M. diluviana but mysid δ13C values generally supported a pelagic pathway of Hg exposure relative to benthic sediments. Overall, these results provide additional support regarding the contributions of lower trophic levels to Hg biomagnification in aquatic food-webs.


Asunto(s)
Cadena Alimentaria , Mercurio , Animales , Bioacumulación , Lagos , Ecología , Zooplancton
20.
Proc Biol Sci ; 291(2021): 20240415, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628122

RESUMEN

Artificial light at night (ALAN) is a growing threat to coastal habitats, and is likely to exacerbate the impacts of other stressors. Kelp forests are dominant habitats on temperate reefs but are declining due to ocean warming and overgrazing. We tested the independent and interactive effects of ALAN (dark versus ALAN) and warming (ambient versus warm) on grazing rates and gonad index of the sea urchin Centrostephanus rodgersii. Within these treatments, urchins were fed either 'fresh' kelp or 'treated' kelp. Treated kelp (Ecklonia radiata) was exposed to the same light and temperature combinations as urchins. We assessed photosynthetic yield, carbon and nitrogen content and C : N ratio of treated kelp to help identify potential drivers behind any effects on urchins. Grazing increased with warming and ALAN for urchins fed fresh kelp, and increased with warming for urchins fed treated kelp. Gonad index was higher in ALAN/ambient and dark/warm treatments compared to dark/ambient treatments for urchins fed fresh kelp. Kelp carbon content was higher in ALAN/ambient treatments than ALAN/warm treatments at one time point. This indicates ocean warming and ALAN may increase urchin grazing pressure on rocky reefs, an important finding for management strategies.


Asunto(s)
Cadena Alimentaria , Kelp , Animales , Contaminación Lumínica , Ecosistema , Erizos de Mar , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA